12187

Does the Basicity of ¹²⁹Xenon Affect Its NMR **Chemical Shift?**

Edward M. Arnett^{*} and Patrick C. Wernett

P. M. Gross Chemical Laboratory, Duke University Durham, North Carolina 27708-0346

Received June 14, 1993

¹²⁹Xe has a nuclear spin of 1/2 and gives a single sharp peak whose NMR chemical shift is so sensitive to its environment that it has been proposed as a probe of the reaction field model of medium effects in pure solvents¹⁻³ and a variety of heterogeneous systems⁴ including zeolites and biological structures.⁴⁻⁶ Recently, a close correlation was shown between the ¹²⁹Xe shift and the ¹³C shift of methane in 16 solvents of diverse polarities, and since the ¹²⁹Xe shift was 27 times more sensitive, it was recommended as the preferred reference probe for van der Waals shift studies.⁷ If, in fact, this technique is successful for isolating dispersion force contributions from all other interactions, it provides a standard against which they can be referenced. However, if the ¹²⁹Xe shift can be affected by acid-base interactions, this must be taken into consideration when it is used as an environmental probe of systems (such as zeolites) which carry strongly acidic sites. Furthermore, if the ¹²⁹Xe shift is acid-sensitive, it might be used to calibrate the strengths of very strong acids, both liquid and solid.

To test this possibility, we have compared the ¹²⁹Xe chemical shifts in some very strong acids as solvents with those in their methyl esters and other nonacidic media. Table 1 lists our results along with those for 36 solvents used by Stengle and colleagues⁶ to establish normative solvent effects on the ¹²⁹Xe chemical shift. Figure 1 plots the shifts in all the solvents versus the Rummens⁸ refractive index function employed by Stengle^{1,2,4,5} as the criterion of reaction field interactions.

The sharp differentiation of the ¹²⁹Xe shift in the very strong protonic acids CF₃SO₃H, point 2 ($H_0 \sim -14$),⁹ and CH₃SO₃H, point 3 ($H_0 = -7.86$),¹⁰ from their esters, points 5 and 6, in contrast to the less acidic Cl₂CHCOOH, point 4 ($H_0 = -0.75$),¹⁰ shows that a specific effect, either hydrogen bonding or even protonation, is perturbing the xenon nucleus in addition to the usual nonspecific dispersion force effects. Not only does this deserve consideration as a contribution to solvent effects in strongly acidic media, but it may also be of potential value in determining the strengths and distribution of acidic sites in solid acids^{11,12} where this type of interaction has so far been ignored.⁴ Although we were easily able to determine the 129 Xe shift in "magic acid" (HSO₃F-SbF₅), we were unable to determine the refractive index with a Bausch and Lomb Abbé refractometer. It appeared to be off-scale below the end of the instrument's range at 1.3000, but the prism surfaces

(1) Stengle, T. R.; Reo, N. V.; Williamson, K. L. J. Phys. Chem. 1981, 85, 3772

- (2) Stengle, T. R.; Hosseini, S. M.; Williamson, K. L. J. Solution Chem. 1986. 15. 777 (3) Muller, N. J. Phys. Chem. 1982, 86, 2109
- (4) Dybowski, C.; Bahsal, N. Annu. Rev. Phys. Chem. 1991, 42, 433. This is a complete review of Xe NMR spectroscopy. (5) Stengle, T. R.; Hosseini, S. M.; Basiri, H. G.; Williamson, K. L. J.
- (6) Miller, K. W.; Reo, N. V.; Uitekamp, A. J. M. S.; Stengle, D. P.;
 Stengle, T. R.; Williamson, K. L. Proc. Natl. Acad. Sci. U.S.A. 1981, 78,
- 4946
- (7) Diehl, P.; Ugolini, R.; Suryaprakash, N.; Jokisaari, J. Magn. Reson. Chem. 1991, 29, 1163.
- (8) Rummens, F. H. A. Chem. Phys. Lett. 1975, 31, 596.
- (9) Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; Wiley-Interscience: New York, 1985.
- (10) Rochester, C. H. Acidity Functions; Academic Press: London, New York, 1970.
- (11) Tanabe, K. Solid Acids and Bases; Academic Press: New York, 1970. (12) Tanabe, K.; Misono, M.; Ouo, Y.; Hattorig, H. New Solid Acids and Bases; Kodanasha-Elsevier: New York, 1989.

Table I.	¹²⁹ Xe 1	NMR	Chemical	Shifts	and	Refractive	Indices	of
Various	Acidic a	nd No	nacidic Se	olvents				

		¹²⁹ Xe NMR	solvent
entry		chemical	refractive
no.	solvent	shift ^{a,b} (ppm)	index (n_D^{20})
1	fluorosulfuric acid-antimony	233	(1.092) ^c
	pentafluoride (1:1) [magic acid]		
2	trifluoromethanesulfonic acid	220	1.3270
3	methanesulfonic acid	213	1.4300
4	dichloroacetic acid	210	1.4663
5	methyl chloroacetate	180	1.4220
6	methyl methanesulfonate	183	1.4140
7	methyl trifluoromethanesulfonate	181	1.3260
8	<i>n</i> -hexane	160	1.3750
9	acetonitrile	175	1.3440
10	methanol	148	1.3286
11	water	196	1 3330
12	methyl chloride	153	1 3389
13	diethyl ether	160	1 3526
14	n-nentane	156	1 3577
15	tetramethylsilane	158	1 3586
15	acetone	175	1 2500
17	attanal	165	1.3330
10	ethanoi	165	1.3014
10	ethyl acciale	168	1.3/24
20		100	1.3076
20	h-octane	171	1.3970
21	2.2.4 trimethulmentene	100	1.3990
22	2,2,4-trimethyipentane	192	1.3910
23	cyclopentane	130	1.4063
24	<i>n</i> -decane	1//	1.4121
25	methylene chloride	192	1.4243
20	cyclonexane	105	1.4203
27	etnylene glycol	199	1.4319
28	i-octanoi	18/	1.4295
29	<i>n</i> -hexadecane	186	1.4344
30	chloroform	217	1.4457
31	oleic acid	193	1.4582
32	carbon tetrachloride	222	1.4603
33	olive oli	198	1.4663
34	fluorobenzene	176	1.4659
35	toluene	190	1.4969
36	benzene	195	1.5011
37	pyridine	197	1.5102
38	chlorobenzene	202	1.5246
39	methyl iodide	209	1.5314
40	<i>m</i> -dichlorobenzene	207	1.5459
41	nitrobenzene	189	1.5524
42	bromobenzene	219	1.5602
43	bromoform	285	1.5977
44	iodobenzene	248	1.6195
45	carbon disulfide	225	1.6279
46	methylene iodide	335	1.7476

^a The ¹²⁹Xe NMR chemical shifts were referenced to pure xenon gas extrapolated to zero xenon gas pressure, where $\delta_{|Xe|=0} = 0$ ppm. ^b Entries 10-46 were taken from ref 6. ^c The refractive index of magic acid was estimated on the basis of its ¹²⁹Xe NMR chemical shift in relationship to the 129 Xe NMR chemical shift dependence on the refractive index of acids 2-4 in the above table.

may have been etched by traces of HF. The value for magic acid interpolated from the line drawn on Figure 1 through the strong acids is 1.092. Also, we were unable to measure the 129 Xe shift in H₂SO₄ $(n_{10}^{20} = 1.429)^{13}$ because its high viscosity prevented solution of a sufficient quantity of ¹²⁹Xe for NMR detection.

Other workers have tried to detect the basic behavior of xenon toward strong Brönsted and Lewis acids. Gillespie and Pez14 used solubility in the superacidic HSO₃F-SbF₅-SO₂ system as a criterion of basicity by which Xe, Ne, O₂, N₂, H₂, NF₃, and CO were considered to be nonbasic but CO_2 and SO_2 to be basic. Christe¹⁵ was unable to obtain an adduct in the HF-SbF₅-Xe system although he isolated and characterized $SH_3+SbF_6^{\theta}$.

⁽¹³⁾ Langes Handbook of Chemistry, 10th ed.; McGraw Hill: New York, Toronto, London, 1961.

 ⁽¹⁴⁾ Gillespie, R. J.; Pez, G. P. Inorg. Chem. 1969, 8(6), 1233.
 (15) Christe, K. O. Inorg. Chem. 1975, 14(9), 2230.

Figure 1. Rummens van der Waals function, $[(n^2-1)/(2n^2+1)]^2 \times 100$, versus the ¹²⁹Xe NMR chemical shift (ppm) for 46 solvents: (1-9) this report, (10-46) from ref 6.

However, strong evidence for Xe as a Brönsted base in solution is that of Olah and Shen,¹⁶ who used the suppression of H–D exchange from D₂ in HF–SbF₅ as evidence for the protonation of Xe, Cl₂, Br₂, and CO₂, while H₂, N₂, and O₂ were not considered to be protonated in this medium. The gas-phase proton affinities¹⁷ of some very weak bases are CH₄ (132.0), CO₂ (130.9), CF₄ (~126), Xe (118.6), N₂ (118.2), Kr (101.6), H₂ (101.3), O₂ (100.9), and Ar (88.6) kcal/mol, showing that in the limit XeH⁺ can be made. Whatever may be the nature of the interactions reported here for Xe with CF₃SO₃H, CH₃SO₃H, and Cl₂-CHCOOH and that inferred for magic acid, they represent a dramatic departure from the previous correlation with reaction field theory and must be taken into account when it is used in the future.

Approximately 2.5 mL of each solvent was transferred into a 10-mm heavy-walled NMR sample tube in an argon-filled glovebox. Each NMR sample tube was placed on a vacuum line and subjected to a freeze-pump-thaw cycle. Xe gas (>99%, National Specialty Gas Co.) was admitted into the vacuum line, and the NMR sample tubes were sealed by a propane-oxygen flame under 1 atm of Xeg pressure. The ¹²⁹Xe NMR spectra were determined on a GE-GN300 NMR spectrometer operating at a center band frequency of 83.0266 MHz with a 33333-Hz spectral sweep width. A signal-to-noise ratio greater than 10 was obtained for all the samples studied employing a 30° pulse angle, a 2-s pulse delay, and between 500 and 1000 transients. The ¹²⁹Xe NMR chemical shifts were referenced to free xenon gas, extrapolated to zero concentration and taken as 0 ppm as described in ref 6.

Acknowledgment. We are grateful to the National Science Foundation for support of this research by Grant CHE-8709249.

⁽¹⁶⁾ Olah, G. A.; Shen, J. J. Am. Chem. Soc. 1973, 95(11), 3582.

⁽¹⁷⁾ Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.